
Approximation of Curves by Line Segments 

By Henry Stone 

1. Introduction. Most methods of linear and nonlinear programming developed 
up to this time were designed to find the maximum or minimum value of a linear 
or nonlinear function inside a region bounded by hyperplanes. In applications of 
these methods it is often found that the formulation leads to constraints which are 
nonlinear. For example, in gasoline blending problems the relationship between 
lead concentration and octane number of a blend (the lead-susceptibility curve) 
has been found to be exponential in form. One method of dealing with such prob- 
lems has been to approximate the given curves by a series of broken line segments 
[1]. The usual method of finding such an approximation has been, by visual examina- 
tion of the graph, first to decide on the number of line segments, second, to select 
the intervals over which each line segment is to apply, and third, to draw in what 
appears to be good linear approximations to the curves over the selected intervals. 
Since the problem of obtaining a best fit of broken line segments to a curve does not 
seem to have been previously investigated, it is the purpose of this paper to formul- 
late the problem, give a closed form solution when the given function is quadratic, 
show a general numerical method of solution, and apply this numerical procedure 
to the lead susceptibility curve. 

In the case when the function is quadratic, an interesting and simple result was 
obtained. It was found that in fitting N lines over some interval (a, b), that the 
points at which one line segment was discontinued and the next line segment started 
were equally spaced over the interval. This result allowed the equations for the 
lines to be expressed in a very simple form. 

2. Formulation of the Problem. Given a known nonlinear relationship 

(1) y=f(X), Uo0 _x ' u. 

It is desired to obtain an approximation of the form 

a, + bix, uo _ x _ U1 

(2) _ a=+b, ui~x u2 

{aNv + b.,v.r, UNr1 _ X < UN 

which is best in the least squares sense. If the points u1, u2, ... , UN are specified 
in advance, the problem reduces to the simple case where the best fit over each 
interval is obtained separately by the usual least squares procedure. The results 
developed below will give the solution to this problem as a special case of the 
general solution. The more general case, treated in this paper, occurs when the end 
points of the line segments u1, 2 1 *2 , 11.v1 are not specified in advance, and when 
only the number of line segments, N, is specified in addition to the relationship 
given by Equation (1). 
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Following the least squares formulation, we wish to obtain the values of the 
variables which minimize 

F(ai, a2, .. * , ax, bi, b2,**, bN, ul , U2) * ,uN-1) 

(2) ~~~~~~~~~~~~~~~N fU 
(= E (f(x) -aj-b, x) dx. 

The method to be used is the usual normal equation technique of finding the point 
at which the partial derivatives of the function (2) are zero. This procedure leads 
to the following system of 3N - 1 equations to be solved for the 3N - 1 variables 
a, ,e.. , UN-1 

(3a) dF = 0 = -2 f f(x) dx + 2a,(u, - upj) + b,(up - u~p_) 
Upi 

p= 1,2, .. 

aF JUP dX + a2(u2 - 2) + 3- 

(3b) Ap =p 0 
p= 1,2, ,V 

,F= 0 = 2f(up)(ap+l - ap) + 2upf(up)(b1+, - bp) 
aup 

(3c) - 2up(ap+lbp+l - apbp) - up-(bp -bp2) - ap+1 + ap2 

p=l, 2<, N- 1. 

For the moment let us assume that the values of ul, u1, u_ are fixed. In 
this case the set of Equations (3a) and (3b) are seen to be nonhomogeneous and 
linear in terms of the a's and b's, and, further, each ap and bp pair may be obtained 
from the solutions of N pairs of linear simultaneous equations. Carrying out this 
computation we obtain 

=a 3)3 {4 (up2 + upup_1 + u12 _1)I(up , ) 

- 2(up + up-1) J (up) ,p_1) f 

6 
(4b) b _ { 2J (up , up-, - (u p+ u ..l )I( It , u. l 1i ) I P 

(up - A 

where 

I(up, utp-,) f f(x) dx, 

(4c) Upl 

J(up up-,) = | xf(x) dx. 
'p-1 

Equations (4a) and (4b) represent the general solution to the problem when the 
points ul, -.. , UN-, have been selected in advance. When this is not the case then 
to proceed further we substitute the ap and bp from Equations (4) into Equations 
(3c), giving a system of N - 1 nonlinear equations in it, , , u'_j to be solved. 
In general no closed form solution for this set of equations can be found. In a later 
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section of this report a numerical method of solution will be described which is prac- 
tical for large-scale computer application. In the case when f(x) is quadratic, some 
simplification of the problem occurs which allows a simple closed form solution to 
be obtained. This result is derived in the next section. 

3. Solution for f(x) Quadratic. In the case that f(x) is quadratic, that is, 

(5) f(x) = rx2 + sx +t 

the function to be minimized is 

(6) F = E (rx2 +s +t aj-b,x)2 dx. 
3=1 i jI 

The integrand of this function can be simplified by consolidating the linear portion 
of f(x) with the aj and bj. So that, if we let . 

a1j = (aj - t)/r 
(7) f3 = (b, -s)1r 

Equation (6) becomes 

(8) F r2 E f (x2 -o-gjx)2 dx, 
j=l - 

and it is only necessary to find the minimum of Equation (8) with respect to the 

aj, ,j and uj. The constant multiplier, r2, in (8) drops out in the derivation of the 
normal e(uations. 

Following the procedure described in the last section with now f(x) = x2, the 
ap and Up are obtained from Equlations (4) and have the following simple form: 

= --I[( 1fp + 1ep-1) + 2upu,-1] 
(9) 

~P = lip + Udp-l p = 1, 2, ... IN- 

Before proceeding to the solution of the general problem, let us first examine the 
case of N = 2. In this ease Equations (3c) reduce to a single equation in u. Sub- 
stituting the results of Equations (9) into (3c) we obtain after some straightforward 
but tedious algebra the following equation in uI., 

(10) 4(U2 - u0) ?1 - 6( 112 - _U02)t12 + 4( 112 - 
3 

o03)11 - (12 4 - Uo4) = 0 

which has for its only real root 

(11) =t1 - (112 + t1o). 

With ul given by (11) and al, I, a Ci, 0 by (9), it is easy to verify that 

(12) al + j31u, = a2 + 0214 

and in terms of the original variables 

(13) a, + bllt = a2 + b2it, 

that is, the lines of best fit intersect at their common end point. 
To proceed now with the case of fitting N lines to the quadratic, we now make 
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the additional continuity assumption, verified in the case N = 2, that each pair of 
adjacent lines intersect at their end points, ul , u2, * * * u-1 , so that instead of the 
system of nonlinear equations (3c) to solve, we have instead the system 

(14) ap + Op11p = 0p+l + Op+1up , p =- 1, 2, *** ,N17 

and substituting for a1p and Op from (9) we have 

(15) 2upzp-1u 1 = 2upup+l- p = 1, 2, , v 1 

which further simplifies to 

(16) uP1 -2up + up+,=O. p= 1, 2, ,V 1. 

Equation (16) may be regarded as a system of linear homogeneous difference 
equations, with two known boundary points, to and UN. The general solution is of 
the form 

(17) up = ki + k2p, 

and evaluating the constants, ki and k2, from the conditions at p = 0 and p = N, 
we have finally 

(18) UP = u+ (UN-UO), P=1,2,** ,N-1 
N 

as the values for the common end points. This equation gives the interesting result 
that for the continuous case, the end points are spaced out at equal intervals over 
the whole interval (uo, UN). In applications of the method it has been found most 
convenient first to determine the u's from (18), next calculate the a's and O's from 
(9) and finally the a's and b's from 

ap = rap + t 

bp(19)b=rrp+s, p= 1,9, 2 ,.N 

where r, s, t are the coefficients of the original quadratic (5). 

4. A Numerical Method of Solution. The basic problem is to find a solution of 
the normal equations (3); that is, to find the a's, b's and u's satisfying 

(3a) --0= p = 1,,2..... V 
aap 

(3b) aF = O p = 1,2,) * *, N 

(3c) a = ?' p = 1, 2, *V, 1. 

It has been shown that these equations are usually so complicated that the solution 
cannot be obtained directly. A general method in such cases is to assume a trial 
solution and derive linear equations for small additive corrections. The solution of 
this set of linear equations leads to a new set of trial values and the process can be 
repeated until the corrections become negligible. 
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Description of the method becomes much simpler if we adopt a new notation. 
To this end let 

01-al, 02= a2, * O, = a 

ON+1 = bi, 0V+2= b2, 02 8= b, 

02X+1 = U1 02X8+2 = U2 X 03N-1 = UN-1. 

The system of equations to be solved is then 

(3') F =0 p = 1_2,..3V-1 

Let the trial values he denoted by 010, * , 03i ; expanding (3') in Taylor's series 

about the point 6&, and dropping higher-order terms, we have 

(20) =F 0 OF + E- ( oil) ' p = 1, *,3N-1 

where the notation (OFI/OOP), etc. means that the indicated derivative is to be 

evaluated at the point Oo. Let Aze = 0 - 00' be the vector with components, 

01 - OiO, *** 03N-1 - 03N-1, let G be the vector with components, (OF/l00), 

* , (OF/103 _'), and let HI be the (3N - 1) by (3N - 1) matrix whose (i, j) 

component is (O2F/OFi000YH). Then in matrix notation the right-hand side of Equa- 

tion (20) becomes 

(21) G + A8) H =0 

and if H is non-singular, then 03', the second approximation to the solution of (20), 

is given by 

(22) '= - 
- H-'G. 

A FORTRAN computer program for the IBM 704 has been written and tested 

which will solve this problem for any function, f(x), which is differentiable. A 

FORTRAN subroutine must be supplied for each f(x), which will compute f(k), 

I(k1 , k2)1 J(k1 , k2) and (cf(k)/cl)O. Further details can be supplied by the author. 

5. Application to Lead Susceptibility Curves. As described in the Introduction, 

part of the purpose of the research described in this paper was to find the best 

method of linearizing the lead susceptibility curve. It has been found experimentally 

that for every blend examined, the relationship between octane number of the blend 

and quantity of tetraethyl lead added is adequately given by 

(23) O N = ki + k2ecx = f(x), 0 _ x _ 3.0 

where 0.N. is the octane number of the blend, x is the quantity of lead in c.c., 

and k1, k2 , c are known constants representative of the blend. It has been indicated 

above that this problem may be treated as a single-parameter problem in c alone, 

since 1k and k2 may be absorbed into the fitted lines. Thus, instead of having the 

integrand of Equation (2) represented by terms of the form 

(k1 + k#e- - ai -bjx)2 
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let us set 

(24) 
aj = (aj - kl)/k2 
Jo = bj/k2, 

and the integrand becomes proportional to 

(25) (ec - aj -fx)2. 

The method and computer program described in the last section were used to 
obtain values of the line and end point parameters for fitting two, three and four 
line segments to the exponential function, exp(-cx). The accompanying Tables, 1 
through 3, give the normalized line slopes, 3, the normalized intercepts, a, and the 
values of the end points, u, for the number of lines, N, equal to 2, 3, 4, as a function 

TABLE 1 

Line Parameters, N = 2 

Intercepts Slopes 
Common end point, Ut 

al a2 I191 

0.1 0.998 0.980 -0.093 -0.080 1.385 
0.2 0.994 0.931 -0.174 -0.129 1.400 
0.3 0.988 0.867 -0.246 -0.157 1.360 
0.4 0.981 0.798 -0.309 -0.170 1.316 
0.5 0.973 0.728 -0.367 -0.175 1.276 
0.6 0.966 0.661 -0.420 -0.173 1.235 
0.7 0.958 0.598 -0.469 -0.168 1.196 
0.8 0.950 0.540 -0.515 -0.160 1.155 
0.9 0.943 0.488 -0.508 -0.152 1.116 
1.0 0.935 0.442 -0.600 -0.142 1.080 
1.2 0.923 0.363 -0.680 -0.124 1.008 
1.5 0.906 0.275 -0.793 -0.101 0.912 

TABLE 2 
Line Parameters, N = 3 

Intercepts Slopes End Points 

al a n3 U1 U 

0.1 0.999 0.993 0.976 -0.096 -0.088 -0.079 0. 785 1.783 
0.2 0.998 0.975 0.919 -0.186 -0.156 -0.125 0.782 1.775 
0.3 0.995 0.943 0.840 -0.266 -0.202 -0.146 0.835 1.820 
0.4 0.992 0.907 0.706 -0.340 -0.237 -0.154 0.830 1.810 
0.5 0.988 0.870 0.673 -0.411 -0.265 -0.153 0.801 1.773 
0.6 0.985 0.835 0.595 -0.478 -0.285 -0.147 0. 774 1.738 
0.7 0.981 0.798 0.523 -0.541 -0.299 -0.137 0.756 1.708 
0.8 0.978 0.767 0.460 -0.604 -0.312 -0.127 0.724 1.663 
0.9 0.974 0.737 0.404 -0.665 -0.323 -0.117 0.694 1.618 
1.0 0.971 0.711 0.355 -0.725 -0.333 -0 107 0.666 1.573 
1.2 0.966 0.664 0.275 -0.841 -0.349 -0.088 0.615 1.487 
1.5 0.959 0.608 0.192 -1.012 -0.371 -0.066 0.548 1.365 
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TABLE 3 
Line Parameters, N = 4 

Intercepts Slopes End Points 

al us a9 as 03 B9 U1 U2 U3 

0.1 1.0000.9960.9880.973 -0.097 -0.091 -0.085 -0.0780.571 1.268 2.077 
0.2 0.9990.9850.9550.908 -0.188 -0.166 -0.143 -0.1200.6071.2962.096 
0.3 0.9970.9680.9100.824 -0.274 -0.226 -0.181 -0.1400.6071.2932.087 
0.4 0.9960.9480.8390.734 -0.356 -0.276 -0.206 -0.1460.5951.2752.068 
0.5 0.994 0.927 0. 805 0. 64 6 - 0.434 - 0.,318 - 0.221 - 0.143 0.577 1.246 2.040 
0.6 0.992 0.9904 0.752 0. 562 - 0. 508 - 0.352 - 0.228 - 0.134 0.563 1.222 2.016 
0.7 0.9890.8800.7000.486 -0.580 -0.381 -0.231 -0.1240.5491.1991.991 
0.8 0.9870.8590.6540.420 -0.6.50 -0.409 -0.232 -0.1120.5301.1651.953 
0.9) ?.985 0. 841 0. 614 40.0363 - 0.720 - 0.435 - 0.233 - 0.101 0.507 1.124 1.910 
1.0 0.984 0.82-4 0.577 0.31 3 - 0.789 - 0.460 - 0.232 - 0.091 0.485 1.084 1.866 
1.2 0.981 0.795 0.51 0 . 2:34 - 0. 925 - 0.508 - 0.230 - 0.072 0.445 1.008 1.778 
1.5 0.977 0.7600 .445 0.154--1.126;-0.5741-0.227 --0.051 0.393 0.907 1.649 

TABLE 4 
Mlaximulm Fitting Errors 

max(c-Z - aj - Ojx) 

N= 2 N = 3 N= 4 

0.1 0.0016 0.0010 0.00055 
0.2 0.0059 0.0032 0.0016 
0.3 0.01 19 0.0050 0.0028 
0.4 0.0189 0.0080 0.0043 
0.5 0.0265 0.0114 0.0062 
0.6; 0.0344 0.0150 0.0083 
0.7 0.0423 0.0190 0.0106 
0.8 0.0500 0.0223 0.0127 
0. 9 0.0574 0.0255 0.0145 
1.0 0.06 45 0.0286 0.0162 
1.2 0.0774 0.0341 0.0193 
1.5 0.0936 0.0410 0.0231 

of the exponential parameter, c. The actual intercepts and slopes, a and b, for any 
particular problem are obtained from 

aj1 = ki + 'a 
(26) =Aj1 

b j = kj3j . 

It has been found preferable in practice, for reasons of accuracy, to determine 

the common end points of the lines from the relation 

a1 + bju = aj+l + bj+1u1j 

giving 

(27) aj 
- 

j+l 

In order to provide the user of this method with a guide to the number of line 

segments that should be used for any particular application, an error analysis was 
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carried out. The maximum difference between the exponential function, e-C, and 
the lines aj - bjx were computed for the two, three, and four line cases. The results 
are shown in Table 4 where 

max(ecx - aj- gx), 0 < x < 3.0 

is given as a function of c for these cases. To transform the error given in the nor- 
malized form to error in terms of octane number for any particular case, the trans- 
formation 

Error (O N) = k2*Error (Table) 

is used where k2 is the constant shown in Equation (23); that is, in the equation 

OV N = k1 + ke-x. 

The tables given for the lead susceptibility curves can be used for curves of a 
more general character, namely those of the form 

(28) g(z) = ri + r2z+ r3e r4Z, Wu < Z < W. 

In this case the least squares function is 
N us 

(29) F = E f (r, + r2z + r3e-r4z - aj- bz)2 dz. 
j=w i-I 

Let a new variable x be defined by 

zwo 3dz x = 3* W dx= 
WN -WO WN - WO 

The range of x is 0 _ x < 3.0, and F becomes 
N nUj 

(30) F K fJ (e - aj - _jx) dx 
jowl i -1 

which is identical in form, except for a proportionality constant, to the previous 
case. The transformation equations are 

ajj = 1 [aj- r + (b -rg)wol r3 

(31) O3 = WNWO) (b, - r,) 

Uj = 3 (Wj-wo) 
WN WO 

The inverse transformation equations to the original units are 

bj = r2 + 30j 
WN -WO 

(32) aj = ri + r3aj -(bj - r2)wo 

= W + (WN - WO) U 

Shell Development Company 
Emeryville, California 
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